Measuring exercise self-

efficacy after stroke: validity

and reliability of current

measures for community-

dwelling stroke survivors.

Karl Espernberger^{1,2} - MPhys

Dr Natalie Fini³ - PhD

Dr Allison Ezzat^{1,4} - PhD

A/Prof Casey L Peiris^{1,5} - PhD

Introduction:

- Many stroke survivors are highly inactive
- Low self-efficacy is considered an important factor
- Tools used to measure self-efficacy haven't been tested for use in the stroke population.

Aims:

To evaluate the test-retest reliability and construct validity of three self-efficacy scales for use with stroke survivors.

Table 1. Participant characteristics and activity information (n=51)

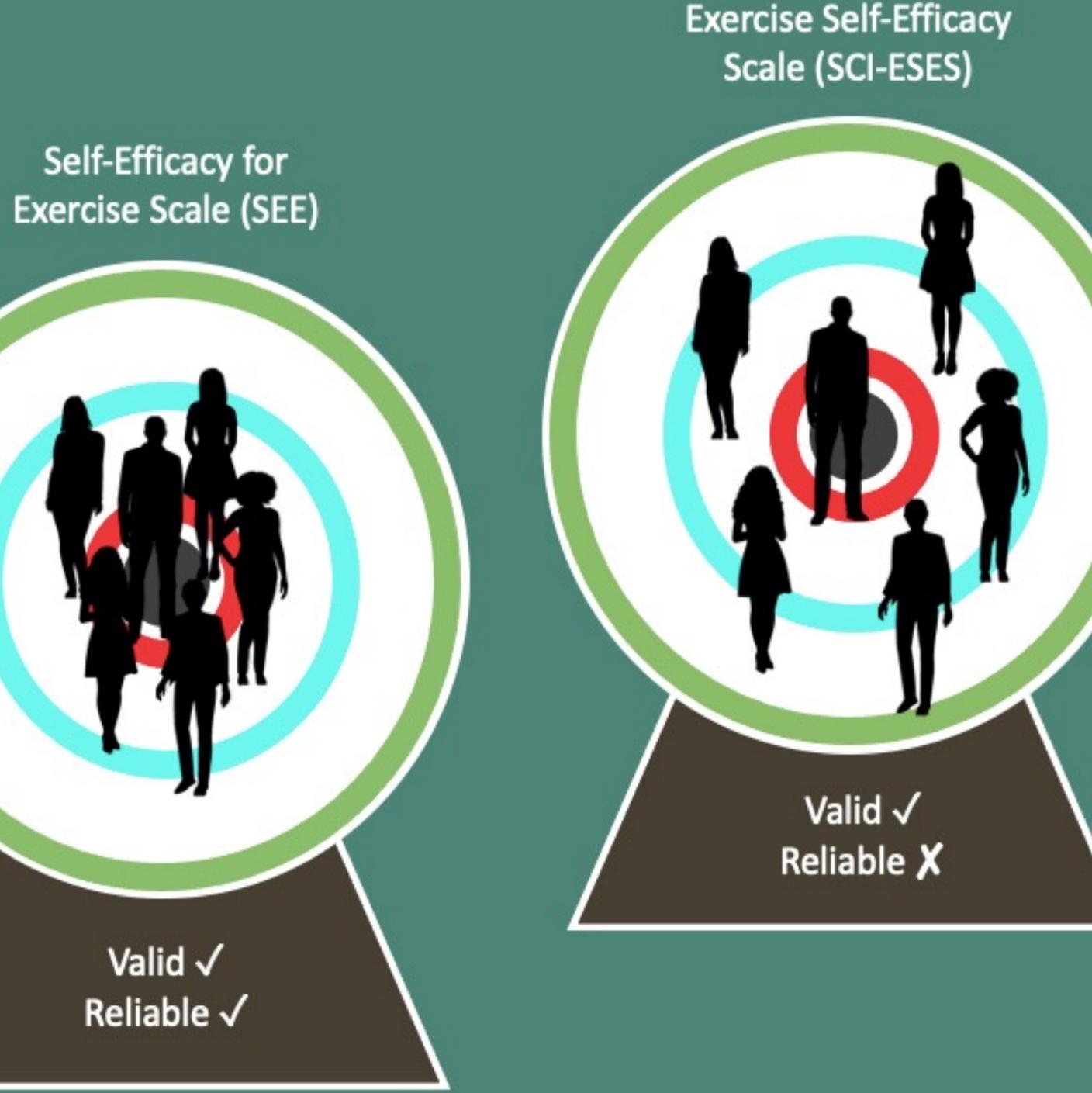
Participant characteristics and activity information			
Female, n = (%)	23 (45)		
Age (years),	74 (11)		
mean (SD)			
Time post stroke (months),	22 (13.5 - 36)		
median (IQR)			
Frenchay Activity Index, mean (SD)	28 (9)		
[score range 0 – 45]			
Barthel Index, median (IQR)	100 (95 - 100)		
[score range 0 – 100]			
Charlson Comorbidity Index, median (IQR)	5 (4 - 5)		
[score range 0 – 37			
Stroke location, n = (%)			
Left cerebral hemisphere	18 (35)		
Right cerebral hemisphere	15 (29)		
Frontal lobe	1 (2)		
Cerebellum	9 (18)		
Unsure	8 (16)		
Daily steps taken, median (IQR)	4664 (2303 - 8063)		
Daily time spent walking (minutes)	71 (48 - 104)		
median (IQR)			

SD Standard Deviation, IQR Interguartile Range

Data collection site: Donvale Rehabilitation Hospital

¹ La Trobe University, School of Allied Health, Human Services and Sport

² Donvale Rehabilitation Hospital


³ Department of Physiotherapy, Melbourne School of Health Sciences, The University of Melbourne ⁴Department of Physical Therapy, University of British Columbia, Vancouver, Canada

⁵Allied Health, the Royal Melbourne Hospital

The Self-efficacy for Exercise Scale (SEE) is valid and reliable for measuring average change of self-efficacy over time in people post stroke.

Participation Strategies Self-Efficacy Scale (PS-SES)

Spinal Cord Injury

Methods:

- Repeated-measures design
- 51 community-dwelling stroke survivors
- 3 self-efficacy scales completed on 2 occasions, 7 days apart
- Construct validity: 8 a-priori hypotheses
- tested Test-retest reliability: intraclass correlation coefficients and Bland-Altman analysis.

Results:

Test-retest reliability for the SEE and PS-SES was adequate for measuring average change over time in groups, however all 3 assessments showed high variation in individuals' scores across the two assessment timepoints.

Construct validity (table 2) was achieved for the SEE and SCI-ESES (75% of hypotheses) while the PS-SES did not achieve the threshold (50% of hypotheses).

The SEE and SCI-ESES were related to higher activity levels, greater functional participation, selfreported physical activity levels, and engagement in work or volunteering activities.

Conclusions:

The findings of the current study recommended the SEE for use in showing average change over time in groups of stroke survivors.

Table 2 Unatherese accorted / rejected

poth	nesis		SEE	PS-SES	SCI-ESE
1.	Self-efficacy scores will discriminate between full community walkers (≥7500 steps/day) and those who are not.		\checkmark	\checkmark	\checkmark
2.	There will be a high or very high positive correlation (r ≥ 0.50) between Frenchay Activities Index score and all self-efficacy measures.		\checkmark	x	\checkmark
3.	There will be at least a moderate difference (SMD ≥ 0.50) between self-efficacy scores of people who reported being regularly active pre-stroke (≥2hours/week), and those who did not.		x	x	\checkmark
4.	There will be at least a moderate difference (SDM ≥ 0.50) between self-efficacy scores of people who report being regular physical activity post-stroke (≥2 hours/week, n = 32) and those who do not.		\checkmark	\checkmark	\checkmark
5.	The scores of the 3 self-efficacy measures will be highly correlated to each other (r ≥ 0.70).	SEE		\checkmark	\checkmark
		PS-SES	\checkmark		X
		SCI-ESES	\checkmark	X	
6.	The SEE and SCI-ESES will be more highly correlated than the PS-SES and SEE, or the PS-SES and the SCI- ESES.			\checkmark	
7.	There will be at least a moderate difference (SMD ≥ 0.50) between self-efficacy scores of participants who are currently working or volunteering and those who are not.		\checkmark	\checkmark	\checkmark
8.	There will be at least a moderate negative correlation (r ≥ 0.50) between Charlson Co-morbidities Index scores and exercise self-efficacy.		x	x	x
				50%	75%

