Distribution and diversity of pulmonary and extrapulmonary **Mycobacterium abscessus infections**

Kimberley Smith^{1,6}, Steven Taylor², Geraint Rogers², Lu Zheng², Chris Coulter³, Jennifer Robson⁴, Nicola Scorer⁴, Rachel Thomson^{1,6,7}, and Scott Bell^{1,5,8}

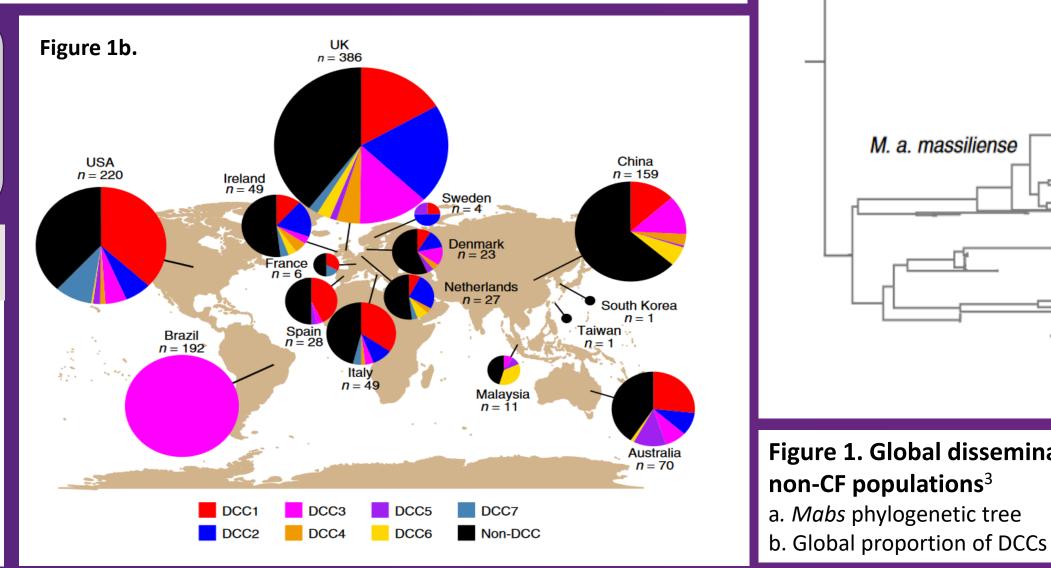
¹Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Palth, South Australian Health, South Australian Health, South Australian, ³Queensland Mycobacterium Reference Laboratory (QMRL), Pathology Queensland, Brisbane, Queensland, ⁴Department of Microbiology, Sullivan Nicolaides Pathology (SNP), Brisbane, Queensland, ⁵Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Brisbane, Queensland, ⁶Gallipoli Medical Research Foundation, Brisbane, Queensland, Brisbane, Queensland

BACKGROUND	

Mycobacterium abscessus group (Mabs)

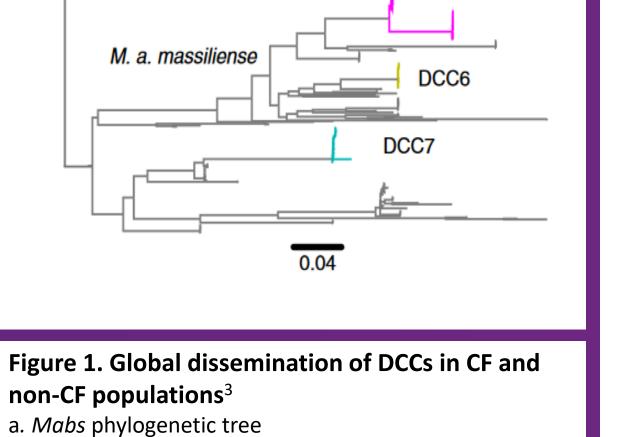
- Rapidly growing nontuberculous mycobacteria (NTM), commonly found in a variety of water sources
- Three subspecies including *abscessus, massiliense and bolletii*
- Opportunistic pathogens causing pulmonary and extrapulmonary infections
- Third most common species of NTM reported in Qld in between 2001 and 2016¹
- Dominant circulating clones (DCCs) of *Mabs* have been recently identified²
- The global prevalence and distribution of DCCs in cystic fibrosis (CF) and non-CF populations are highlighted in Figure 1

Figure 1a. DCC1 M. a. abscessus DCC2 DCC4 DCC5 DCC3

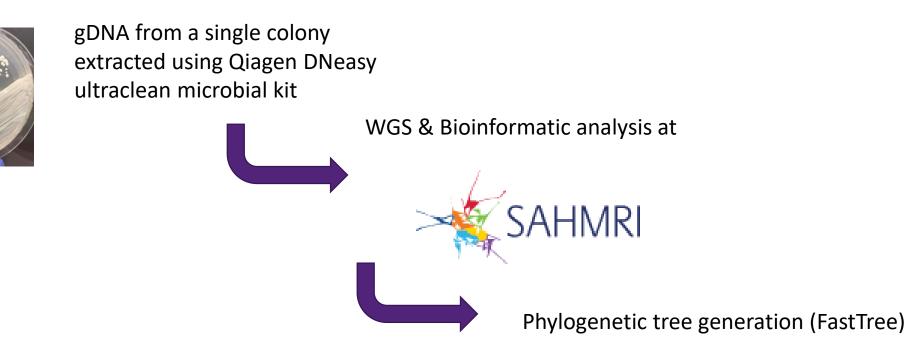

METHODS

Two hundred and fifty-four *Mabs* isolates from 228 patients were supplied from two Queensland laboratories, QMRL and SNP (Table 1). Inclusion was limited to a single isolate per patient unless mixed colony morphology was evident.

Table 1. *Mabs* isolate sampling


Sampling Characteristics	QMRL (n=144 [*] patients)	SNP (n=84 [*] patients)	
Isolate selection	Systematic sampling [#]	Convenience sampling [^]	
Years	2000-2020	2018-2021	
Sample collection sites			
Pulmonary	Sputum, washings, BAL, tissue	Sputum, washings, BAL	
Extrapulmonary	Skin, soft tissue, fluid, blood	Soft tissue	
Number of isolates			
Pulmonary	84	95	
Extrapulmonary	73	2	

KNOWLEDGE GAP Limited information on the prevalence and distribution of DCCs in non-CF infections


AIMS

1. Determine the genomic relationships between *Mabs* isolates from non-CF extrapulmonary pulmonary and infections in QLD between 1999 to 2021 2. Report the prevalence of DCCs in non-CF pulmonary and extrapulmonary infections

[#] If available the first *Mabs* isolate of the month, every 5 years spanning 20 years * 26 patients had >1 mixed colony morphology (rough or smooth) [^] *Mabs* isolates made available through another study

Workflow

RESULTS

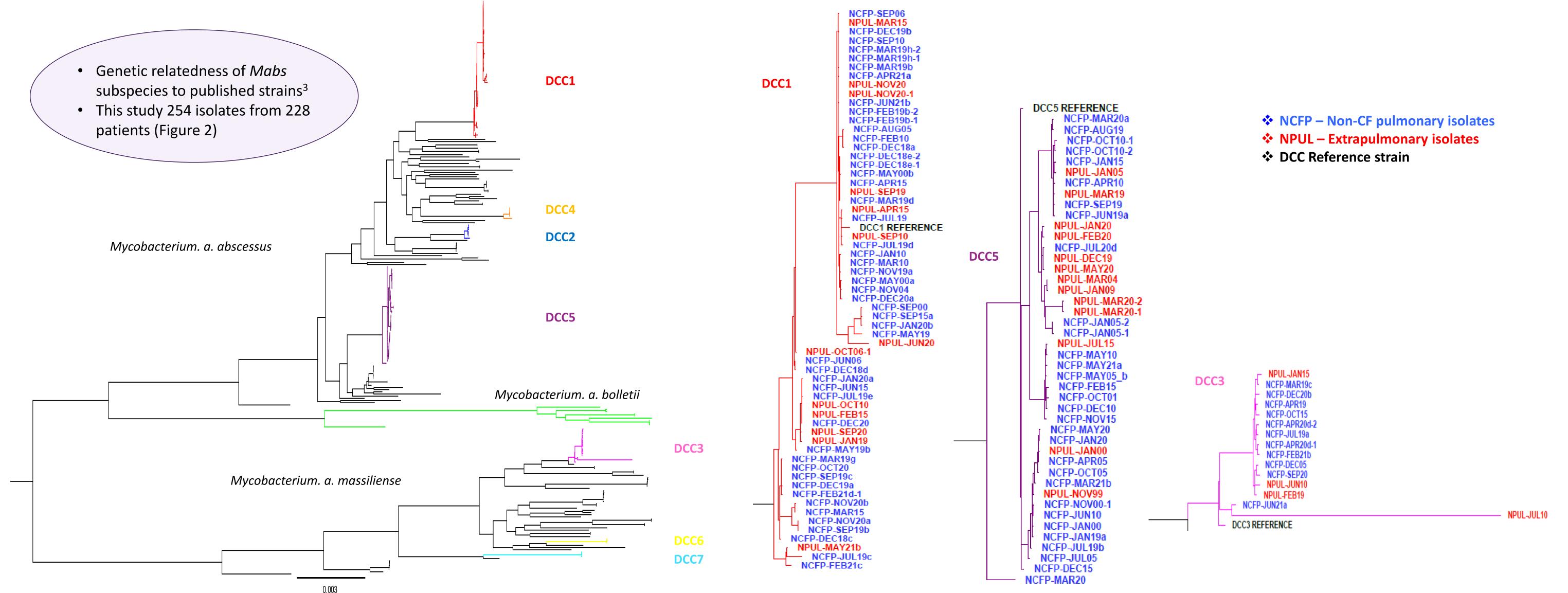


Figure 2. Phylogenetic tree of *Mabs* from non-CF pulmonary and extrapulmonary origin (reference strains from Ruis 2021³)

Table 2. Mabs subspecies identification in patient cohorts⁺

<i>Mabs</i> subspecies	Non-CF [^]	CF [‡]		Combined Pulmonary	Extrapulmonary'	4
	n= 158	n=71	— p-value [*] –	n= 229	n= 70	- p-value [*]
	n (%)	n (%)		n (%)	n (%)	
M. a. abscessus	112 (70.9)	52 (73.3)	0.75	164 (71.7)	48 (68.6)	0.65
M. a. massiliense	42 (26.6)	15 (21.1)	0.41	57 (24.9)	14 (20.0)	0.43
M. a. bolletii	3 (1.9)	1 (1.4)	>0.99	4 (1.7)	6 (8.6)	0.013
>1 <i>Mabs</i> subspecies	1 (0.6)	3 (4.2)	0.09	4 (1.7)	2 (2.8)	0.63

⁺For footnotes see Table 3

Mabs subspecies identified in patient cohorts (Table 2)

- Pulmonary non-CF and CF patient isolates have similar distribution of subspecies (p>0.05)
- *M. a. bolletii* was significantly greater in extrapulmonary compared with combined pulmonary isolates (p=0.013)
- No significant difference was noted when subspecies identification from SNP and QMRL cohorts were compared (p>0.05, data not shown)

Figure 3. Highlighted predominant DCC branches from Figure 2 (reference strains from Ruis 2021³)

Table 3. Dominant circulating clones identified in patient cohorts

Mabs DCC	Non-CF [^]	CF [‡]		Combined Pulmonary	Extrapulmonary [^]	- p-value*
		CL	*			
IVIUDS DCC	n= 158	n=71	— p-value [*] –	n= 229	n= 70	p-value
	n (%)	n (%)		n (%)	n (%)	
M. a. abscessus						
DCC1	44 (27.9)	23 (33.4)	0.53	67 (29.3)	11 (15.7)	0.02
DCC2	3 (1.9)	2 (2.8)	0.65	5 (2.2)	3 (4.3)	0.39
DCC4	3 (1.9)	1 (1.4)	>0.99	4 (1.7)	1 (1.4)	>0.99
DCC5	29 (18.4)	3 (4.2)	0.003	32 (14.0)	12 (17.2)	0.56
M. a. massiliense						
DCC3	10 (6.3)	4 (5.6)	>0.99	14 (6.1)	4 (5.7)	>0.99
DCC6	1 (0.6)	1 (1.4)	0.52	2 (0.9)	0 (0.0)	>0.99
DCC7	1 (0.6)	0 (0.0)	>0.99	1 (0.4)	1 (1.4)	0.41
>1 <i>Mabs</i> clone ^{\$}	1 (0.6)	3 (4.2)	0.09	4 (1.7)	2 (2.9)	0.62
Unclustered	66 (41.8)	34 (47.9)	0.39	100 (43.7)	36 (51.4)	0.27

DCCs identified in patient cohorts (Table 3; Figure 2 and 3)

- DCC1 was significantly greater from combined pulmonary compared with extrapulmonary isolates (p=0.02) The proportion of DCC5 was:
 - Significantly greater in non-CF compared with CF individuals (p=0.003)
 - Significantly greater in QMRL (21 years) compared with SNP cohort (3 years)(p=0.006, data not shown)

SUMMARY

- The results from this study have contributed to our understanding of the diversity and clonal dispersion of DCCs within non-CF clinical patient isolates in QLD
- *Mycobacterium a. abscessus* is the predominant subspecies in the non-CF isolates

^Non-CF pulmonary and extrapulmonary patients from this study cohort as described in Table 1

[‡]CF pulmonary patients (159 isolates) obtained from unpublished work, personal communication, Stockwell RE, 2022

*Fisher's exact test (two-tail) used for comparison of proportions, p-value <0.05 was significant

^{\$}DCC and/or unclustered mixed infections. Pulmonary non-CF 1 patient: DCC1 and unclustered. CF 3 patients: DCC1, DCC3 and unclustered; DCC1 and unclustered; and DCC6 and unclustered. Extrapulmonary 2 patients: DCC1 and DCC6; unclustered (subspecies *abscessus* and *massiliense*)

- These results demonstrate that DCCs can be isolated from a range of clinical infections and are not limited to people with CF
- Limited understanding of acquisition pathways and antibiotic resistance

kim.smith@uq.edu.au

in Kimberley Smith 🗋 uq.edu.au

Faculty of Medicine

REFERENCES

1. Thomson RM, Furuya-Kanamori L, Coffey C, Bell, SC, Knibbs LD, Lau CL. Influence of climate variables on the rising incidence of nontuberculous mycobacterial (NTM) infections in Queensland, Australia 2001-2016. Sci. Total Environ; 2020. 740. 2. Bryant JM, Grogono PM, Rodriguez-Rincon D, Everall I, Brown KP et al. Emergence and spread of a human transmissible multidrug-resistant nontuberculous mycobacterium. Science; 2016. 354 (6316): 751-757. 3. Ruis C, Bryant JM, Bell SC, Thomson R, Davidson RM, Hasan NA et al. Dissemination of Mycobacterium abscessus via global transmission networks. Nat. Microbiol; 2021. 6: 1279–1288.

Acknowledgements

UQ NTM Team Robyn Carter; Dr Christine Duplancic; Dr Felicia Goh; Dr Kay Ramsay

QMRL, Pathology QLD Nicolae DeChavez; Dr Melanie Syrmis

CREATE CHANGE